
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1579
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

JANUS: The Protector of Virtual Machine
Networks

Insiya Javed, Amit Kumar Singh, Brajesh Kumar, Shailesh Mhaisekar

Abstract: Developing a virtual machine security tool manually is generally believed to be a tedious, time consuming,
and error-prone process because of the large semantic gap. Recent advances in the field of virtualization show that we
can largely narrow this semantic gap. But still there is no completely automated tool for VM security. In this paper, we
present JANUS, an entirely new technique for VM security that can automatically bridge the semantic gap. The key
idea is that, through oursystem, we will automatically redirect all the requests coming into the virtual machine network
to our monitoring machine which will identify the valid or authentic requests and redirect them to the respective
machines after they have been logged in the database. This system acts as a gateway for the VM network and offers a
number of new features and capabilities. Particularly, it automatically enables inspection of every single request
coming into the network and hence ensures high security. We have tested our system on several commonly used
utilities on top of different kernels. The experimental results show that our technique is general (largely OS-agnostic),
and it introduces 9.3X overhead on average for the redirected requests as compared to the native non-redirected
ones.

Index Terms— Janus, monitoring machine, viClient, vCenter server, intrusion detection, introspection, target OS,
default gateway, request handler, rule executor, rule manager, rule configurator, packet analyser.

—————————— ——————————

1 INTRODUCTION
In context with its renewed popularity, researchers
are identifying many new applications based on
the abstractions and isolation provided by
virtualization. One area that has received
significant attention is security. Security
applications benefit from virtualization by running
in isolated virtual machines (VMs) and building
smaller trusted computing bases (TCBs). This
technique is being widely used in the projects now.
For the purpose of security of a virtual network,
our idea is to setup a secure VM that is used to
monitor the other VMs running in the network.
These monitors can be used in intrusion detection
systems (IDS), integrity checking, honeypot
systems and forensic analysis, among others. While
the previous efforts in this space have focused
more on the applications of introspection, our aim
is to build a proper architecture to support the
technique.

————————————————
 The authors are currently pursuing bachelors degree program in

computer engineering from D.Y.Patil College of engineering in
PuneUniversity, India.

 Insiya Javed. E-mail: insiyamian@yahoo.com
 Amit Kumar Singh. E-mail: amit.k_singh@yahoo.com
 Brajesh Kumar. E-mail: shyamazad@gmail.com
 Shailesh Mhaisekar. E-mail: mhaisekars@gmail.com

Our experience designing and implementing this
system has shown that implementing security
system in a secure and efficient manner is non-
trivial. However, our architecture demonstrates
how one can achieve these goals without losing
monitoring functionality. Monitoring with Janus
requires no changes to the VMM or to the VM
being monitored. In addition no changes are
required to the OS being monitored, so Janus is not
restricted to monitoring open source OSes. It can
be extended to monitor any OS that runs on the
VM. Janus incurs a minimal performance penalty
for typical monitor applications.
We designed the Janus architecture based on six
high-level requirements. In a general sense, these
requirements can be seen as typical good
programming guidelines, or good security
guidelines. We identify the following six
requirements for monitoring VMs:
1. No superfluous modifications to the VMM.
TheVMM should remain as small and simple as
possible since it is part of the TCB. If a VMM
includes the necessary primitives to support the
monitoring architecture, then it should not be
modified. If a VMM lacks the necessary primitives,
then the modifications made should be what are
minimally required to support the monitoring
architecture.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1580
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2. No modifications to the VM or the target OS.
Modifications to the target OS (i.e., the OS being
monitored), are problematic. One of the key
reasons why virtualization is attractive for
monitoring is the isolation between VMs. Placing
monitoring code within the same OS that is being
monitored bypasses this isolation, negating this
key benefit. Therefore, this requirement
encourages all monitoring code to remain in an
isolated VM.
3. Small performance impact. An excessive
performance impact can render a monitoring
architecture worthless. The performance impact is
measured as any reduction in performance of an
application caused by the monitoring software.
Ideally this impact is both small and consistent, but
some initialization costs may be required.
4. Rapid development of new rules. New rules
may be needed to address new types of attacks.
Furthermore, it is advantageous to keep the
monitor code simple to limit the opportunity for
introducing errors into the monitors. The
monitoring architecture should provide APIs that
are used to develop new rules.Therefore,
satisfaction of this requirement means that the
APIs should be designed in a way that simplifies
the job of the monitor developer.
5. Ability to monitor any data on target OS.The
monitoring machine should have a full view into
the target OS. It should not be limited to providing
information about a small part of the target OS.
While this ideal may not always be possible, the
more information a monitor can view, the harder it
is for an attacker to evade detection.
6. Target OS cannot tamper with monitors. If the
target OS can tamper with the monitoring
machine, then the possibility exists for malicious
code to tamper with the monitors. For this reason,
the monitoring machine should be isolated or
protected from the target OS. If all monitor code is
in an isolated VM, then this is not difficult.

Our main contribution is the Janus monitoring
architecture that satisfies the above requirements.
The remainder of this paper focuses on the Janus
architecture, its implementation, and some
example applications that demonstrate the
performance and flexibility of the system. Section
2 discusses the related work. Section 3 provides
background information on the components in the
system. Section 4 presents the architecture and
implementation details for Janus. Section 5
discusses future scope in this research space and
we conclude with Section6.

2 RELATED WORK
VMMs first came into use over 35 years ago. While
Madnick and Donovan identified the security
benefits of VMMs in the early 70s, research that
explicitly leveraged these benefits did not take
place until nearly 20 years late. More recently,
virtualization is being used in different ways to
address a variety of systems management, and
security problems. In the security space, we have
seen innovative work in intrusion detection
systems, workload isolation, attack investigation
and debugging, and system monitoring. Each of
these applications have one thing in common: they
each require the ability to monitor data from a
target OS. However, the mechanics of how to
properly do such monitoring have not been
adequately addressed in the literature. Through
the details provided in this paper, and by making
Janus an open source project, we are exposing
these mechanics for the benefit of future work in
this space.
Joshi et al presented a system called IntroVirt that
uses introspection and replay to test if a system
was previously attacked through a known
vulnerability. Similar to the first effort, only limited
details were given regarding the introspection
mechanism. More recently, several projects have
provided details about their introspection
techniques, only to reveal suboptimal security
decisions in their architecture. The Hyperspector
project is a virtual distributed monitoring
environment used for intrusion detection. The
Hyperspector approach to introspection is to
provide access to a few specific pieces of
information (processes, sockets, etc). This limited
view into the target OS violates property (5) of our
requirements for a robust monitoring solution, and
Hyperspector also violates property (1) by
extensively modifying the VMM, and (6) bysharing
OS kernels between VMs.
Asrigo et al presented a system for monitoring
honeypots, but they violate property(2) by
requiring hooks in the target OS kernel,
property(3) by causing a substantial performance
impact, and property(4) by incorporating kernel
code in new monitor hooks. Finally, the Antfarm
system tracks only OS-level processes, violating
property (5), and performs the monitoring from
within the VMM, violating property (1). Each of
these virtual memory introspection systems were
built to provide monitoring capabilities for a
security system. However, none of these systems
meet our six requirements for a monitoring
solution, making it much more likely for an

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1581
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

intruder to compromise, evade or disable the
monitors.
Monitoring in a virtualized environment is not the
only approach. Petroni et al developed Copilot, a
secure coprocessor used to monitor the memory of
a host. In practice, this approach is very similar to
virtual memory introspection from a VM, but it
requires extra hardware and cannot be generalized
to monitoring other data such as disk I/O.Looking
into the commercial world, many monitoring
applications sold today simply run within the
target OS. Forexample, anti-virus software
typically runs in the same OSthat it is protecting.
However, this architecture is flawed because
malicious software can simply disable the anti-
virus software.
Monitoring at the disk level has traditionally taken
place as part of a research trend focused on
creating smarter, more semantically-aware devices.
This has applications in both systems optimization
and security. Researchers at Carnegie-Mellon
University have leveraged the physical isolation of
such systems to enable intrusion detection and
recovery capabilities. These systems are able to
perform their function in a tamper-resistant
manner, regardless of an OS compromise. This
approach, however, has the obvious downside of
requiring additional hardware support and the
need for a special infrastructure for
communication between the management tools
insidethe OS and the disk IDS. XenAccess
leverages virtualization to provide the same level
of monitoring functionality without either of these
limitations.
Hyper-Spector’s approach is to mount a shadow
version of the monitored filesystem and execute
integrity checkers (e.g.tripwire). Not only does this
require significant modifications to the VMM,
violating property (1) and increasing the chances of
a VMM compromise; it also limits access tothe disk
data by providing an exclusively static and high
level view of it, violating property (5) and making
it very easy to evade the monitor. Elango et al and
Jones et al have applied some of the principles of
semantically smartdisk systems and gray-boxing to
the performance improvement of Xen virtual
machines. Their results show how monitoring and
active control of virtual machines can have a wide
variety of applications outside the security area.

In the past, many researchers choose to work with
User Mode Linux (UML), a virtualization solution
that allows you to boot a Linux kernel as a process

in a running version of Linux. The earliest work
with introspection used VMWare, a full featured
commercial virtualization product. Looking
forward, interest is now growing in the kernel-
based virtualization driver (KVM) that is built into
the Linux kernel startingwith version 2.6.20. While
our techniques are viable on any of these
platforms, a virtualization solution designed as an
independent and lightweight software layer
running directlyon the hardware offers a solid
foundation to asecurity-oriented solution.

3 BACKGROUND
Three capabilities of virtual machines make them
particularly attractive for building an intrusion
detection system. The first capability is isolation.
Software running in a virtual machine cannot
access or modify the software running in the VMM
or in a different VM. Isolation ensures that even if
an intruder has completely subverted a guest
virtual machine, he or she still cannot tamper with
the IDS.
The second capability is inspection. In a virtual
machine system, guest VMs run on emulated
hardware and the virtual machine monitor has
access to the entire state of each guest VM. Being
able to directly inspect the virtual machine makes
it particularly difficult to evade a VM-based IDS
because there is no state in the VM that the IDS
cannot see.
The third capability is interposition. The presence of
privileged instructions forces the VMM to trap and
emulate these instructions, which incur extra
overhead that would not exist in a conventional
system. However, these privileged instructions
also provide hooks to allow a VM-based IDS to
record or modify privileged instruction parameters
and other virtual machine state.
It is not only helpful to detect attacks as they
happen, but also to harden systems ahead of time
so that they are more resilient to intrusions.
Intrusion prevention systems do just this. With the
aid of virtual machine technology, the systems
described in this section enforce policies that help
protect critical resources so that they are safe from
potential attackers.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1582
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig. 1. Virtual Machine Security

Some of the features of VM which have been
explored to provide security to virtual machine
networks in the past are:-
1. Snapshotting: A snapshot is the state of a virtual
machine, and, generally, its storage devices, at an
exact point in time. Snapshots are "taken" by
simply giving an order to do so at a given time,
and can be "reverted" to on demand, with the effect
that the VM appears (ideally) exactly as it did
when the snapshot was taken.
The capability is, for example, useful as an
extremely rapid backup technique, prior to a risky
operation. It also provides the foundation for other
advanced capabilities.
2. Teleportation: The snapshots described above
can be moved to another host machine with its
own hypervisor; when the VM is temporarily
stopped, snapshotted, moved, and then resumed
on the new host, this is known as teleportation. If
the older snapshots are kept in sync regularly, this
operation can be quite fast, and allow the VM to
provide uninterrupted service while its prior
physical host is, for example, taken down for
physical maintenance.
3. Failover: Similar to teleportation above, failover
allows the VM to continue operations if the host
fails. However, in this case, the VM continues
operation from the last-known coherent state,
rather than the current state, based on whatever
materials the backup server was last provided
with.

Safety Requirements:
A VMM can have different kinds of relationships
with the host operating system. It may be an
unprivileged application, but it may also be
require cooperation from inside the kernel. A
thirdpossibility is that no host operating system is

present. In this case one could say the VMM itself
acts as a minimal operating system. When used for
debugging purposes, it is desirable that the VMM
can run as an application. This avoids restarting
and allows one to run other applications besides
the VMM while debugging. It is preferable that
kernel cooperation is not required, because one
would typically want to avoid installing kernel-
mode drivers since these may make the operating
system less stable. Another problem is that
installing such a driver is normally only allowed
for the root user. The same reasoning goes when
virtual machines are used for running untrusted
applications.The intrusion detection rules should
be defined in such a manner that it shouldn’t block
any necessary system process.

Security Requirements
Virtual machines should provide absolute isolation
and, as such, perfect security. The only means for
communication between virtual machines should
be the virtual network connection. Unfortunately,
perfection is hard to come by. Both the VMM and
the host kernel are pieces of software and, as such,
we can expect them to contain bugs. We will
therefore evaluate the robustness of the security in
the presence of bugs. We will find that in some
cases the VMM can increase robustness, while in
others the isolation entirely depends on the ability
of the kernel to isolate applications. Secure
isolation is the core feature when virtual machines
are applied to isolate untrusted programs or to
secure honeypots. It is also of utmost importance
when used for server consolidation, since a breach
of security would mean down-time. In each of
these cases we can expect malicious attempts to
break security. For debugging purposes we rely
less on the robustness of VMMs. Although crashes
of the virtual machine are possible and should not
effect the physical machine, we do not expect any
malice. Only system admin should have control to
add or modify the intrusion detection rules of the
policy module.

4 ARCHITECTURE AND
IMPLEMENTATION

4.1. Architecture:
The system architecture shows that the system
consists of the following components, each
performing its own set of functions:-

1. The Central Management Server: The
CMS is the most important part of the

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1583
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

system. It controls the entire network. It
acts as a mediator between the client and
the virtual machine. It is a central body
which is connected to the clients as well as
to the VMs. The client request first goes to
the CMS from where it is directed to the
corresponding virtual machine.

2. The Client: The client is the requesting
body. There may be multiple clients
connected to the virtual network at a time.
These clients are assigned some
authorities by the administrator of the
system. Some clients may have certain
access rights while others may not. This
record is kept by the system admin. The
client issues requests to access particular
VMs.

3. The Router: The request issued by the
client proceeds towards the Central
Management Server but it is interrupted
by a router in its path. It prevents the
request from hitting the CMS and
redirects it to the Monitoring Machine
where it will be scrutinized and further
action will be decided.

4. The Monitoring Machine: The
monitoring machine first identifies the
incoming request and makes an entry in
the log. Secondly, processing of the
request is done in which the authority
rights of the requesting client are checked
and it is decided whether the request is
authentic or not. Lastly, the necessary

action is taken which may be one of the
following:-

 If the request is authentic then it will be
forwarded to the central management
server which will send it to the
corresponding VM.

 If the request is unauthentic then it will
not be allowed to hit the CMS and will be
terminated by the monitoring machine. Its
entry will be made in the log, which will
indicate to the admin that some client
tried to intrude into his system by
performing an unauthorized action.

5. ESX: The ESX acts as a service console for
the virtual machines. When we try to
mount a virtual machine on a VMware
hypervisor, first the ESX is installed. It is a
kind of Linux kernel which provides a
platform to install the necessary files of a
VM. There are multiple ESX kernels
connected to the CMS and each ESX may
carry one or more VMs.

6. Virtual Machines: Virtual machines are
the target machines. These machines are
subjectively a complete machine just like a
physical one but objectively they are
merely a set of files installed on the
hypervisor. The CMS directs the client
request to the corresponding VM by
sending it to the ESX where the VM is
installed and finally the request hits the
VM and the task is performed.

Fig. 2. JANUS Architecture

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1584
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.2 Implementation:
Our system introspects into low-level disk traffic,
just as it is able to map raw memory pages. It
therefore satisfies property by providing full and
complete access to data. Our system also includes
an inference engine which is able to dynamically
infer the high-level file system operations executed
inside a domain based on the intercepted low-level
disk traffic. To this end, we have decided to
leverage the architecture described earlier since it
simplifies the implementation of the interception
mechanism and avoids making modifications to
the VMM, which is encouraged by property. The
biggest challenge, however, is faced by the
inference engine which must somehow overcome
the semantic gap between the low-level view and
the desired higher-level, file system-oriented view
that will be given as output. It does this combining
pre-programmed file system structure knowledge
with dynamic inference techniques. Whereas the
interception mechanism (which is roughly
equivalent to the introspection memory-mapping)
is independent of the current OS and file system by
only providing raw access to disk traffic, the
inference engine is dependent on knowledge of the
file system in use. So far, knowledge has been
included in the inference engine to be able to
determine only file/directory creation/removal
operations under the ext2 file system, although
knowledge about other file systems can be
incorporated.
 Our system has preliminary support to perform
memory introspection on fully virtualized (HVM)
VMs. In HVM VMs, physical addresses and
machine addresses are the same. Therefore, system
will automatically detect HVM domains and not
attempt to perform this translation in those cases.
In practice, the P2M translation is a simple table
lookup, so omitting this step does not measurably
improve performance. Since memory introspection
support for HVM VMs is in its early stages, there is
some reduced functionality. This reduced
functionality is the reason why there is no HVM
performance data available for the user address
function.
Every request that comes into the VM network is
governed by a rule. Every rule constitutes of a
condition and a respective action that must be
taken if the condition is satisfied. Thus, the Janus
web application will have two interfaces as shown
in the figure:
1. For the application administrator to configure
the rules
2. For monitoring the incoming vmware client

request.
The administrator will create and configure rules
in the rule configurator which will have a set
conditions mapped to a set of actions.
The vmware client request will go to the request
handler which will store all the incoming requests
in a queue for further processing.
The request handler will forward the first request
from the queue to the rule executer. The rule
executer is the module where the condition in the
request is compared to the condition stored in the
configurator and then the necessary action is taken.
The rule executer is the part responsible for taking
the desired action. It is here that the client request
will be logged into the database and will either be
blocked or forwarded to the VM network, based on
the action that is mapped to the condition satisfied
by the client request.
When request reaches the rule executer, it
demands the rule manager to select the
appropriate rule i.e. conditionaction from the
rule configurator and supplies it to the rule
executer for further action. The rule manager
supplies the most appropriate rule to the rule
executer. The rule executer implements this rule on
the client request and sends a response to the
request handler. This response will either be a
response to intimate that the request has been
successfully forwarded into the VM network or
that the request was not authentic and hence has
been blocked.

Fig. 3. Rule Execution System

req handler

queuequeue

rule executer
rule configurator

condition actioncondition action

rule manager

database

vmware clientSOAP request

response
forward request

get rule

map rule

get details

send details

generate rule

send rule

send result

application administrator

controller

admin request

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1585
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The request handler will send a response message
to the VM client in accordance with the response
received from the rule executer. This response will
intimate the client whether his request was
successfully executed or abolished. At the same
time the rule executer will also send a message to
the administrator to intimate him that a particular
client tried to access his system.

5 FUTURE SCOPE

Stepping back to look at the six requirements given
for a robust monitoring solution, we note that
JANUS satisfies each of these requirements. (1) The
system uses an unmodified version of ESX as a
VMM platform.(2) Using the capabilities provided
by this system, no special code needs to be inserted
into the target OS. This is especially useful as it
allows the monitoring machine to work with both
open and closed source target OSes. (3) Our
performance testing shows that our address
translation, memory copying, and disk I/O
monitoring functions have small overheads,
making these capabilities effective for a variety of
monitoring applications. (4) Developing monitors
with Janus is straight forward, with a minimal
learning curve. (5) The Janus architecture is easily
extensible to collect any type of data from the
target OS. (6) Finally, leveraging the protections
provided by the VMM, Janus is sufficiently
isolated from the target OS and any possibility of
tampering by malicious software.

Janus currently provides a solid foundation for
monitoring in a virtualized environment. Yet, our
experiences working with virtual machine
monitoring highlighted some areas that would
benefit from additional research. Introspection
requires use of OS-specific information. This
means that it is possible for an OS upgrade, hotfix,
or patch to break the monitors. Ideally, JANUS
should provide an abstraction layer that
dynamically adapts to these changes and provides
a consistent interface to monitor applications.
Finding techniques to enable this approach is still
an open research problem.
For reasons of backwards compatibility, changes in
file system structure and layout are very rare. So
monitoring is not prone to the types of problems
discussed above for introspection. Instead, we
envision the future work in
this space to focus on scalability, functionality, and
HVM support.

6 CONCLUSION
This paper described Janus, a monitoring system
for virtual machine network. Janus’ development
was guided by a set of design principles aimed at
providing a solid foundation for secure and
flexible virtual machine monitoring. Janus
implements virtual machine security by
comparing the condition in the incoming request to
those present in the rule configurator and then
taking the necessary action that is mapped to that
particular condition. Our evaluation revealed that
Janus imposes a minimal performance overhead to
the target OS and disk operation.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1586
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

BIBLIOGRAPHY
1. Books

i. Virtualization Essentials by Mathews.
ii. VMware ESX and VMware ESXi.
iii. Hypervisor: High-impact Technology by Kevin Roebuck.
iv. VMware and CPU virtualization technology by Jack Lo.

2. Papers
[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith.A secure and reliable bootstrap architecture.IEEE Computer Society, Washington, DC,

USA, 1997.
[2] P. M. Chen and B. D. Noble.When virtual is better than real. In HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in

Operating Systems, page 133. IEEE Computer Society, Washington, DC, USA, 2001.
[3] R. Goldberg. Survey of virtual machine research. IEEE Computer Magazine, 7:34–45, June 1974.
[4] S. King and P. Chen. Subvirt: Implementing malware with virtual machines. In IEEE Symposium on Security and Privacy.

Oakland, California, May 2006.
[5] X. Zhao, K. Borders, and A. Prakash.Towards protecting sensitive files in a compromised system.In 3rd International IEEE Security

in Storage Workshop. 2005.
[6] R. Goldberg. Survey of virtual machine research. IEEE Computer Magazine, 7:34-45, June 1974.
[7] WU Qingbo, WANG Chunguang and TAN Yusong. System Monitoring and Controlling Mechanism based on Hypervisor. In

2009 IEEE International Symposium on Parallel and Distributed Processing with Applications.
[8] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection Based Architecture for Intrusion Detection. In VMSec '09

Proceedings of the 1st ACM workshop on Virtual machine security. In Proceedings of the 2003 Network and Distributed System
Symposium (2003)

3. Links
i. http://en.wikipedia.org/wiki/Hypervisor
ii. http://xen.org/products/xenhyp.html
iii. http://www.computer.org/portal/web/csdl/doi/10.1109/ISPA.2009.99
iv. http://www.usenix.org/event/deter07/tech/full_papers/duchamp/duchamp_html
v. KVM: Kernel-based Virtual Machine. http://kvm.sourceforge.net/.
vi. Intel Virtualization Technology. http://www.intel.com/technology/virtualization.
vii. http://pubs.vmware.com
viii. http://microsoft_technet/libraries

ix. http://Nas-san.com
x. http://vim.datastore.html

